Exit

Laser Cutting Stainless Steel vs. Plasma Cutting

Should I use Laser cutting or should I use Plasma cutting? 

This is a common question that customers ask us. They want to know the difference between the two, and which cutting process is better suited for their application or end-use. While the answer is not always cut and dry, there are some general rules that separate the two processes. 

Laser cutting and Plasma cutting are both thermal cutting processes widely used in steel fabrication. Each is used to cut metals across a wide range of industries and applications. Several factors must be considered when deciding between laser cutting vs. plasma cutting for stainless steel. These can include material thickness, material type, the complexity of cuts, and tolerances required. 

Each cutting solution has its advantages. Your manufacturer can help determine the best cutting solution for your application, but it is still important to understand the laser cutting and plasma cutting processes and understand the advantages each can provide to help inform your discussion. 

Laser Cutting

Laser Cutting Laser cutting is a precise thermal cutting process achieved by utilizing a focused beam of light. We often recommend this manufacturing process for applications where parts require tighter tolerances. When it comes to a specific material choice, we work with customers and in some cases make recommendations based on their specific application. When a part has tight tolerance specifications, needs precise cutouts, or requires holes that are small relative to the material thickness, we turn to laser cutting. 

Stainless steel laser cutting is a popular choice for the many benefits it provides. Some of the most noted advantages of laser cutting include:

  • Flexibility. Once a laser is set up and configured for a specific material type and thickness, cuts can be easily repeated on multiple parts, sheets, and plates without the need to change out tools. 
  • Precision. With general cutting tolerances starting at +/- 0.015”, laser cutting is well suited for precise cuts. 
  • Quality. Laser cutting produces component parts with greater accuracy than other thermal cutting methods. 
  • Repeatability. The consistent tight tolerances achieved with laser cutting ensure high repeatability between parts.
  • Speed. Laser cutting can be faster than other traditional mechanical cutting processes, especially when making complex or extremely precise cuts.
  • Contactless. With laser cutting, there is no mechanical friction to cause wear on tools. Only the laser comes in contact with the material being cut. 

Plasma Cutting

img-cnc-plasma-cutting-large Plasma cutting uses a mixture of gases in combination with an electric arc to cut. With our high-definition plasma cutting equipment, we can perform bevel cuts on parts as required. Beveling is an important step in weld preparation and much larger or thicker component parts require beveled edges in order to facilitate a weld joint with the correct amount of weld penetration. Because of this, plasma cutting is often a better choice for parts that require weld-prep bevels, or for simple parts without complex geometry where exact tolerance is not as critical. 

Plasma cutting stainless steel offers many possibilities. It offers an effective way to cut a variety of thicknesses and can cut sheets into curved or angled shapes. Some of the advantages of plasma cutting stainless steel include: 

  • Automation. As a CNC (computer numerical control) cutting process, plasma cutting mitigates the risk of human error over hand-held cutting methods. 
  • Speed. Plasma cutting cuts as much as five times faster than many comparable cutting methods. The process makes cuts rapidly while simultaneously vaporizing the cut material.
  • Processing. Plasma cutting is an ideal method for quickly producing high-quality blanks for medium-to-high thickness Stainless Steel. This cutting method is also good for mild steels of low-to-medium thickness.
  • Lower heat input. Plasma cutting can cut extremely hard metals, such as high-strength steel or abrasion-resistant steel, with a lower heat input than other cutting methods.

G.E. Mathis Company Metal Cutting Solutions

The advice listed here should be considered as general rules. At G.E. Mathis Company, we consider which process is best suited to cut each part on a case-by-case basis. We offer both Precision Laser cutting as well as Hi-Definition Plasma cutting options, and also have the experience to help advise you on which is better for your project or application. 

At G.E. Mathis Company, our Precision Laser cutting and Hi-Def Plasma cutting services can be performed on an array of materials and thicknesses, and we can handle a wide range of production volumes. Whether you’re prototyping a new part or ramping up for a high-volume run, we can provide end-to-end production services for your laser cutting or plasma cutting project.

In addition, G.E. Mathis Company can provide the following services:

  • PPAP (Production Part Approval Process) – All Levels
  • FAIR (First Article Inspection Report)
  • Capability Studies (Statistical Process Control)
  • CMRT (Conflict Minerals Reporting Template)

Contact us or request a quote to see how our laser cutting or plasma cutting services can help your project. 

All About Metal Fabrication

Metal fabrication refers to the process of cutting, shaping, or molding raw or semi-raw metal materials into an end product. Depending upon the type and grade of metal, as well as the desired end product, metal fabricators may employ a variety of techniques to manufacture cost-effective, high-quality components for a wide range of industrial applications.

Types of Metal Fabrication Processes

Some of the different metalworking methods metal fabricators employ include: 

Cutting

Laser cutting One of the more commonly utilized metal fabrication methods, cutting involves splitting metal into smaller pieces. Since cutting is a requirement for many metal jobs, it may be employed alongside other metal fabrication techniques, such as punching, welding, or bending. There are several few different methods of cutting, including:

  • Sawing is the oldest method of producing straight cuts through metal materials.
  • Laser cutting employs a high-powered, focused laser beam of light to cut through the metal materials.
  • Waterjet cutting operations utilize a high-powered water stream to cut through different materials, including metal.
  • Plasma Cutting uses a mixture of swirling gases to cut through metal.
  • Shearing uses two large blades to cut through metal like a giant pair of scissors. 
  • CNC cutting uses a computer-controlled machine to make precise cuts through metal via a variety of metal cutting techniques (e.g., laser cutting, plasma cutting, etc.)
  • Die cutting employs steel rule (flatbed die cutting) or cylindrical (rotary die cutting) dies to cut out precise metal shapes.

Forming/Bending

Unlike cutting, forming (or bending) doesn’t remove material from the metal work-piece. Instead, the process alters the work-piece with a machine such as a press brake, or by a hand-held method such as with a hammer, or punch die to fit the required specifications.

Punching

The punching process sandwiches metal between a die and a punch. When pressed downward, the punch shears through the metal, and produces a hole in the work-piece.

Welding

Welding is a fabrication process that employs heat and/or pressure to join different metals and materials together. There are many welding methods available, each of which is suited to different work-piece and filler materials, production specifications, and other project parameters. Some of the most common include: 

  • Submerged arc welding (SAW): This welding method employs a continuous electrode to create an arc between the welding rod and the work-piece. The addition of a thick granular flux forms a shield that protects the weld zone from atmospheric contamination during operations.
  • Shielded metal arc welding (SMAW): This welding method—also referred to as stick welding—uses a welding rod coated in flux that carriers a high-power electrical current. The coating breaks down during welding operations, forming a layer of slag and a gas shield that protects the weld as it cools.
  • Gas metal arc welding (GMAW): This welding method—also known as MIG welding—relies on an adjustable and continuous solid wire electrode. During operations, the electric arc formed between the work-piece and the electrode heats and melts the base metals to form the weld. 
  • Gas tungsten arc welding (GTAW): This welding method—also called TIG welding—requires the use of a non-consumable tungsten electrode. It produces strong welds without fillers.  
  • Fluxed core arc welding (FCAW): This welding method is similar to GMAW welding, except it utilizes a tubular wire electrode filled with flux rather than a solid wire electrode. Self-shielded FCAW operations rely only on flux to protect the weld zone, while dual-shielded FCAW operations rely on both flux and an external shielding gas. 

Stamping

Uses a top and bottom die molded into a custom 3-dimensional shape. When the metal is pressed between the two dies, it conforms to the desired shape. This process is used to make many complex metal shapes, such as body panels for the automotive industry.

Machining

Uses CNC-controlled machinery with various cutting tools to rapidly produce a custom 3-dimensional metal component by removing unwanted materials.

Advantages and Applications of Metal Fabrication Processes

There are several different types of metal fabrication processes employed by industry professionals to produce metal parts and products. As each process utilizes different techniques and equipment, it offers distinct advantages and best use cases. 

Advantages and Applications of Cutting

Perhaps the most ubiquitous of all metal fabrication processes, cutting can be employed alongside other methods. In general, cutting offers several advantages with more modern techniques providing enhanced manufacturing capabilities. Some of the advantages of using cutting to fabricate metal parts include: 

  • Greater precision
  • Higher repeatability
  • Faster production speeds
  • Better cost-effectiveness

Advantages and Applications of Forming/Bending

Metal fabricators use forming operations—e.g., rolling, indenting, and bending—to produce many metal parts, such as pipes, enclosures, and boxes. The advantages of using these operations include: 

  • Broader product capabilities
  • Greater part design flexibility, including for complex shapes and geometries

Advantages and Applications of Punching

Parts produced through punching operations find application in a wide range of industrial products, including airbags, aircraft, batteries, motors, and medical equipment. By using the punching process to produce these parts, manufacturer benefit from:

  • Faster production speeds
  • Smaller environmental footprints
  • Easier equipment setup
  • Lower costs per part

Advantages and Applications of Welding

In general, welding allows for minimal waste production, reduced labor and material costs, and process portability. Each of the individual welding techniques also offers unique benefits. For example:

TIG Welding Benefits

Commonly used for aluminum and aluminum alloys, TIG welding produces a better surface finish than MIG welding and doesn’t require a filler material to produce the weld. 

MIG Welding Benefits

Commonly used on steel, MIG welding does require the use of consumable filler material (i.e., the feeding wire). However, compared to TIG welding, it is faster and easier to control.

Sticking Welding Benefits

Commonly used on iron and steel, stick welding is the simplest welding technique. As such, it is used extensively for industrial fabrication applications. 

Advantages and Applications of Stamping

Stamped parts are found across a diverse set of industries. The stamping process allows for: 

  • Higher precision and accuracy
  • Faster production speeds
  • Lower per-unit production costs (for high-volume runs)

Advantages and Applications of Machining

Machining is a broad industrial term for subtractive manufacturing processes, such as drilling, milling, and turning. While some companies still rely on manual machining units, many companies have adopted the use of computer numerical control (CNC) machining equipment. The latter enables industry professionals to achieve the following: 

  • Tighter tolerances
  • Higher production consistency
  • Greater cost-efficiency (for small to medium runs)

Metal Fabrication Solutions From G.E. Mathis Company

At G.E. Mathis Company, we offer industry-leading metal fabrication services to customers across a diverse set of industries. Equipped with a 135,000 square foot, state-of-the-art manufacturing facility and over a century of industry experience, our team provides: 

Precision Laser Processing

1/2" Hardox-450 laser cut plates We offer laser processing capabilities for a variety of materials, from 16 gauge sheets to 1.25 inch thick plates. Our fiber optic and hybrid cutting systems produce up to 8,000 watts of power, and accommodate sheets and plates up to 14 feet wide and 100 feet long. Armed with these systems, we offer some of the tightest tolerances in the industry. 

Precision CNC Plasma Cutting

We utilize 4-axis machines capable of high-definition cutting action to provide precision CNC plasma cutting services. The equipment’s 400 amp, straight, dual-head, and contour beveling capabilities help us provide superior results across a wide variety of materials, including carbon, aluminum, stainless steel, and exotic metals. 

Precision CNC Punching

Our 40-ton, high-speed precision punch accommodates plates and sheets up to 60-inch wide and 0.5-inch thick. We process materials such as carbon steel, aluminum, and stainless steel with best-in-class industry tolerances.

Precision Forming/Bending

For our precision forming/bending operations, our team utilizes eight hydraulic press brakes, including two equipped with CNC capabilities. These machines feature 400- to 1,000-ton capacities and accommodate thicknesses up to 2 inches and lengths of 20, 20, 30, 23, 25, 40, and 48 feet.

3/4" bump-formed cone segments

Some of the formed/bent components we fabricate include:

  • Cones
  • Cylinders
  • Ob-rounds
  • Segments
  • Channels and angles
  • Bump formed sections

We process a variety of materials in these operations, such as:

  • Carbon steel
  • Stainless steel
  • Aluminum
  • Brass
  • Bronze
  • Copper
  • Titanium
  • Hardox® wear plate

Precision Welding

Our AWS-certified welders are capable of providing precision arc and MIG welding services using CNC-controlled welding and fully automated processes, including:

  • Dual-wire submerged arc welding
  • Flux cored arc welding—i.e., FCAW
  • Gas metal arc welding—i.e., GMAW
  • Gas tungsten arc welding—i.e., GTAW
  • Shielded metal arc welding—i.e., SMAW
  • Submerged arc welding—i.e., SAW

We weld materials up to 12 feet wide and 50 feet long, including:

  • Carbon steel
  • Stainless steel
  • Aluminum
  • Hardox® wear plate

Hardox® Wearparts Fabrication

1/4" Hardox-450 cone weldment Our team of certified craftsman leverages thermal cutting, laser cutting, and welding to produce wearparts in the following material grades:

  • 450–500 Hardox®
  • 100–110 Strenx® (Domex®)
  • 100–110 Weldox®

These products are available in up to 2-inch thicknesses with industry-leading tolerances to meet even the most demanding application requirements.

At G.E. Mathis Company, we have over a century of experience providing metal fabrication solutions. If you have a metal fabrication project, we can meet your needs. Contact us today for more information about our metal fabrication capabilities or request a quote from one of our experts for your next project.

Laser Cutting Vs. Plasma Cutting

“Should I use laser cutting or should I use plasma cutting?”—that is the question. Certainly for manufacturers like us, this is a question we receive from many customers; what is the difference between the two and which cutting process is better suited for their end application? While the answer is not cut and dry, there are some general rules that separate the two processes.

DSC_9090_large Laser cutting is a precise thermal cutting process, utilizing a focused beam of light. We often recommend this manufacturing process for applications where parts require tighter tolerances. When it comes to a specific material choice, we typically work with customers and make recommendations based on their specific application.

img-cnc-plasma-cutting-large Plasma cutting, on the other hand, uses a mixture of gases in order to form a cut. With our high definition plasma cutting equipment, we are able to perform bevel cuts on parts as required. According to this article, “Here manufacturers rely on beveling as a part of the weld preparation process.” The article continues, “Beveled edges produce a sturdier type of weld needed to support the massive weight and loads on such machines and structures.”

For parts that have simple shapes, without many cutouts or intricate notching, we typically utilize plasma cutting. When a part has tight tolerance specifications, needs a precise cut, and/or calls for a small hole diameter in relation to the thickness of the material, then we utilize laser cutting. Again, these are general rules and we consider which process is best suited to cut each part on a case by case basis.

Now, hopefully you have a better understanding of whether laser cutting or plasma cutting is better suited for your application. If not, let us help determine the right cutting process for your parts!