Exit

Understanding Different Types of Welding

Over the years, there have been many advances that have allowed welders to more easily join different metals and materials. As specialized welding techniques are developed to better suit the needs of specific industry challenges, it may become less clear which option will be best for the job at hand. G.E. Mathis Company’s team of experts are on hand to review projects with our customers in order to select the best option available.

difference between tig and mig weldingTo determine which type of welding is best suited for a specific project, welders must consider the physical properties of the workpiece and filler material, desired product specifications, and the necessary equipment and power supplies.

Let’s look at some of today’s most widely used welding methods and how they differ:

Submerged Arc Welding (SAW)

Requiring a continuous electrode feed to create an arc between a welding rod and the workpiece, this type of welding adds a thick granular flux to form a shield. The result is a flux blanket, under which the arc is submerged to protect the weld zone from atmospheric contamination. This process can be automated, mechanized, or semi-automated through the use of hand-held guns.

Shielded Metal Arc Welding (SMAW)

Commonly referred to as “stick” welding, shielded metal arc welding (SMAW) is a manual process requiring a welding rod coated in flux, which carries a high-power electric current. During welding, the electrode’s flux coating breaks down, creating a layer of slag as well as a gas shield to protect the weld until it cools. Final products may require finishing services, however, as molten splatter is a common occurrence.

Gas Metal Arc Welding (GMAW)

Gas metal arc welding, also called MIG (metal inert gas) welding, is distinct in its use of an adjustable, continuous solid wire electrode feed. Versatile and easily automated, GMAW only requires that the welder guides the welding gun in the proper position and orientation along the fusion point. The electric arc formed between the electrode and the workpiece heats and melts the metals to join them.

Flux Core Arc Welding (FCAW)

Similar to MIG welding, flux core arc welding uses a tubular wire filled with flux in place of a solid wire. Dual-shielded FCAW uses the flux with an external shielding gas for protection, while self-shielded FCAW relies only on flux to protect the molten weld puddle, making this an ideal option for outdoor applications. As an automated process, FCAW is also popular for projects requiring quick turnaround times.

Gas Tungsten Arc Welding (GTAW)

Gas tungsten arc welding, more commonly referred to as TIG (tungsten inert gas) welding, uses a nonconsumable tungsten welding rod (or electrode) to apply intense heat to the base metal. This produces an autogenous weld by melting two pieces of metal directly together without a filler. TIG welds are also protected by an external shielding gas — usually argon. This method produces strong, high-quality welds, though the process can be painstaking, requiring extreme focus and precision to weld the small space between the arc and the workpiece.

Specialty Welding at G.E. Mathis Company

At G.E. Mathis Company, our experienced, skilled team of welders is certified to AWS D1.1, D1.6, D9.1, and D10.9 standards. We work regularly with Hardox wear plate, high-strength steels such as Domex and Strenx, carbon steel, stainless steel, as well as other alloys.

To learn more about specialty welding, or to discuss how our team of experts can help with your next project, contact us today.

Welding Capabilities for the Construction Industry

Welding is instrumental to the success of a construction project. Not only is it a handy repair tool for broken and damaged machine parts, it is the mainstay of production supplying any construction endeavour with the required raw materials to progress at the desired pace.

It is undertaken by skilled operators and has to be performed according to pre-defined mandates and a set of compliance rules in order to ensure that the joints are strong and immune to jostling and rust.

WELDING, ITS IMPORTANCE AND IMPERATIVE IN CONSTRUCTION

All kinds of welding rely on generating an arc that is capable of raising the temperature of the parent material to the melting point. It is then fused with a filler metal which by rule of thumb is chosen to be structurally stronger than the original base. Ranging from sub-merged arc to metal active gas to manual metal arc, different welding processes are leveraged at construction sites around the world to serve unique needs. Special ventures in the aerospace and naval industries have progressed to laser arc hybrid welding and electron beam technology.

An operation team manipulating welding equipment must be knowledgeable of the nuances of this technique in order to ensure the integrity of welded joints and thus by association created products. A large scale construction project is only as durable as the quality of its individual components.

Also according to the Consumer Justice Group report, welding tasked to untrained labour is an extremely hazardous proposition. Thousands of injuries occur right on-site because of careless handling of equipment or experimentation by unskilled staff.

SOME BEST PRACTICES TO KEEP IN MIND

As far as possible, complicated welding responsibilities must be left to professionals. Construction projects call for the employment of AWS (American Welding Society) certified welders who are cognizant of the involved risks and capable of handling them expertly.

Especially for the frequently used MIG (Metal Inert Gas) welding:

  • Care should be taken to ensure that welders wear protective gear (including an auto-darkening face shield) to eliminate the risk of contact burns and blisters
  • Cotton is the chosen material because it doesn’t melt like polyester
  • Be on the look-out for splatters of molten metal and grinding sparks which can cause a fire
  • Avoid using galvanized steel as the parent material since it gives off carcinogenic vapours

GE MATHIS AND ITS HISTORY OF EXCELLENCE:

G.E. Mathis Company has been an industry renowned name in the field of precision arc and MIG welding. We have perfected our craft over 100 years of rigorous practice assisting construction companies, OEMs, independent projects and manufacturers with their welding and rolling needs. ISO 9001:2008 certified, we are the gold standard in the welding and precision services domain.

Contact us today at 773.586.3800 and we will be glad to discuss how our fabrication and welding capabilities may help with your next project