Exit

The Versatility of Hardox Wear Plate

Specifically designed for use in harsh, demanding applications, Hardox Wear Plate provides an unmatched combination of hardness and toughness, allowing for extended service life and cost savings. This unique material is used across a wide range of industries to provide optimal reliability and wear resistance.

steel plate

Why Is Hardox So Tough?

Hardox, also known simply as wear plate, is a wear-resistant sheet steel developed by the Swedish company SSAB in 1974. This steel wears slowly, allowing the equipment used in abrasive applications and aggressive-wear environments to last longer, thereby reducing maintenance needs and costs.

Hardox offers a unique combination of hardness, strength, and toughness. The material’s high strength enables thinner metal sheets to be used, meaning products can be made to be simpler and lighter while still carrying high payloads. Hardox Wear Plate also has good impact resistance, even at low temperatures.

Hardox sheets and plates provide ideal welding and machining properties, simplifying production and repair work. To provide this excellent weldability, Hardox Wear Plate steel is manufactured to have a highly accurate chemical composition. Advanced hardening and post-treatment processes also help imbue it with its unique properties. The combination of high payloads, low maintenance costs, good availability, and long service life allows for overall cost savings while ensuring optimal reliability.

Finally, Hardox’s superior wear performance, crack safety, and deformation resistance provide defense against wear, dents, and cracks. To evaluate these properties, Hardox and ordinary high strength structural plates have been compared through comprehensive drop tests; in one test, weights varied between 330 and 1,800 pounds and were dropped from heights of up to 10 feet. The Hardox steel plate showed only moderate deformation, while the structural steel alternative couldn’t withstand the impact.

Advantages of Hardox

Extremely versatile, Hardox provides critical benefits for various industries. Below are some of the key features discussed above.

  • Superior hardness — Offering excellent wear resistance, Hardox features all-around hardness that doesn’t impact structural performance.
  • Excellent toughness — Hardox is able to resist cracks if subjected to deformation and can withstand heavy blows, allowing it to be easily bent, formed, and welded. Combined with its high yield strength, this durability also allows for the creation of lightweight designs.
  • Consistency — Hardox retains its properties and strength even in severe, harsh conditions — and also during precision bending and forming, as well as precision welding and MIG welding — allowing for predictable, reliable results.
  • Long service life — Hardox can double, or even triple, equipment wear plate service life, optimizing performance while minimizing the risk of damage.

Common Hardox Applications

Hardox’s unique properties make it well suited to a wide range of industries and applications, such as:

  • Construction and demolition — Hardox can be used in various types of construction equipment, from evacuators and demolition tools to fragmentizers, all of which require high reliability and longevity to withstand heavy use and ensure worker safety.
  • Mining — In this safety-critical industry, worker’s equipment — such as mining trucks — must be able to stand up to harsh conditions while maintaining a long lifespan; Hardox provides this reliability, cutting down on repair costs and delays.
  • Military — Hardox Wear Plate provides the protective strength and reliability required in the military industry and is commonly used in the manufacture of armored vehicles.

Strenx (Domex): High Performance, High Strength Steel

What Is Strenx?

Strenx is a high strength, hot-rolled steel sheet also offered by SSAB; the steel is low-alloy and cold-formed. Previously called Domex, this unique material has been rebranded as Strenx.

The Advantages of Strenx

Extremely versatile, Strenx provides critical advantages for various industries. Some of its unique qualities and benefits include:

  • Excellent versatility — This steel has excellent formability and good weldability, meaning it can undergo various manufacturing processes.
  • Reduced production costs — Strenx allows for the manufacture of stronger, higher-quality products that require less steel and welding. This also allows for a lighter-weight product less susceptible to damage, saving money on repair and replacement costs in the long run.

Common Strenx (Domex) Applications

The unique properties of Strenx make it well-suited to a wide range of industries and applications, such as:

  • Automotive — Designers like to keep structural weight low but strength-handling levels high. With Strenx, products made can be simpler and lighter while still carrying higher payloads.
  • Construction and demolition — Strenx can be used in cranes and booms, both of which require high reliability and longevity to withstand heavy use and ensure optimal worker safety.

Learn More

For over a century, G.E. Mathis Company has been providing top-quality metal fabrication services, from CNC plasma cutting and CNC punching to plate rolling and welding. Through our partnership with SSAB, we’re proud to offer Hardox fabrication services; we supply Hardox in both sheet and plate form and will work with you to meet your specific project needs.

To learn more about the uses and unique properties of Hardox — which is ideal for a wide range of fabrication methods, including welding, cutting, bending, and bending — download our free eBook, “Fabricating Tougher Components with Hardox® Wearparts.”

American Manufacturing in 2014 and the Outlook for 2015

Generalizations regarding the state of US Manufacturing are rife! For the first time in almost 50 years, the growth in the GDP was outpaced by actual, tangible growth in the manufacturing sector. The last time the two were at par was before the milestone year of 2000 after which offshoring came into its own and became the dominant trend of the industry.

Pundits are attributing this ‘revival’ of US manufacturing to three main reasons:

  • Because of the sophistication of the fracking process, the US is now the largest producer of oil and natural gas in the world, trumping Saudi Arabia to claim the elusive title. The implications of this feat are profound leading to a significant drop in transportation as well as electric costs within the country.
  • Because of the innovations in the field of robotics, the rote work of wrench turning has now been delegated to industrial robots and other precision instruments. The main issue with labor in the US was availability of reliable and competent blue collar workers for the minimum wage rate. Thanks to the automation of certain processes, human ingenuity and logic can be better rewarded with higher paying jobs of supervisors and managers.
  • United States can now boast very low cost of raw materials leading to a dip in overall manufacturing investment as well.

The US manufacturing sector alone is the 8th largest economy in the world, and this trend is likely to sustain in 2015 and even beyond.

The main focus of the coming years is going to be the Re-shoring vs. Offshoring battle. The global labor pool has become more aware of its rights, and the cry of improved wages is resonating from all corners of the world. Pay has risen by a significant 10% in China and were likely to spread to other countries as well.

Most probably the industries which are not labor intensive and suffer from the often prohibitive costs of long transportation routes (like chemicals and metals) will move back to home soil in order to take advantage of the boom in oil production and the easily available rich reserves of raw materials.

Ventures with high foreign demand and the pressing need for a lot of affordable labor to keep production running will continue to go the offshore way, especially if the manufacturing skill gap is not remedied.

The future of US Manufacturing is bright! But only time can shed light on the dominant trends which will re-shape the sector for the coming decades.

Our Metal Forming Skills are a Work of Art

Throughout the manufacturing industry, there has been a lot of discussion around what is known as the “skills gap.” The skills gap –essentially the lack of workers with appropriate skills for the industry—is becoming more of a problem as the baby boomer generation is beginning to retire and the younger workforce are finding careers in other fields. Not only is the skills gap affecting the bottom line, but’s it’s also providing manufacturers with a major challenge.[1]

Here at G.E. Mathis, we understand the importance of these technical skills, as they allow our craftsmen to perform at the highest levels. Take, for example, our forming capabilities. Our advanced equipment and expertise allow us to process metal in a variety of dimensions and shapes, even up to 2” thick. Taking our forming services to the next level, we can bend long parts up to 40 ft. long.

Forming metal is an art, a skill acquired through observation and instruction. It is a skill that needs the human touch, one that cannot be completed by a robot or machine. Our skilled craftsmen pride themselves on their ability to form almost any shape. Some of the special shapes that we form, such as cone segments, cannot be processed through automation; instead, the operator needs to form the radiuses in the component using our unique equipment, working the metal blank to form the shape to the customer’s specifications. There is a complex process that we go through to form these complex parts.

This process requires a lot of technical skill, something that is becoming more and more unique, as we have seen due to the skills gap. However, our shop team continues to put this high level of skill into each part that they make, no matter what the customer’s specifications are. In fact, two recent projects we worked on exemplify the type of skill needed for metal forming: eccentric cones and elbow transitions.

Eccentric Cones

Unlike more traditional concentric cones, where the center points of each end of the cone are the same, the eccentric cones have these center points offset.

Elbow Transitions

Elbow transitions are used where a pipe needs to make a turn in an assembly. These also require a very specific and high level of skill to be able to fabricate and fit together with precision.

Neither of these projects had straight-forward dimensions, nor could they simply be made by an automated machine. Instead, they required specific radiuses that needed to be formed by a skillful hand. Rising to the challenge, our craftsmen have the skills to do so. G.E. Mathis will assure that these skills never become a lost art.

 

[1] http://www.sandiegonewsroom.com/business-finance/1282-how-to-combat-the-manufacturing-skills-gap

Bridging the Way through Manufacturing’s Skills Gap

As a long-time American manufacturer, we have seen manufacturing rise and fall, as well as rapidly change due to up-and-coming technologies. Today, we certainly see how American manufacturing is experiencing a renaissance, due to reshoring and new technology that has been introduced into the production process. However, there is one looming issue that is poised to greatly affect manufacturing’s success—that would be the skills gap.

While there are plenty of manufacturing jobs available, there are not enough skilled workers to take them on. Older generations of manufacturers are nearing retirement, and younger generations are not looking to manufacturing as a career path. According to U.S. News, young students are not learning proper skills, such as math and computer skills, in order to prepare them for a manufacturing career, thus creating this “skills gap.” As the article states, “Part of the challenge for manufacturing business leaders in attracting young talent lies in correcting the stigma associated with work in the industry.”

Manufacturing companies throughout America are finding a variety of ways to rectify this issue. For example, there are some local schools that are trying to start STEM programs, giving young students a solid background in science, technology, engineering, and math fields. The City of Chicago is partnering with Chicago Public Schools and other organizations to offer an education focused on technology and sciences, ensuring that students are prepared for future careers in STEM fields.

While the skills gap is a problem for the manufacturing industry, educational organizations and many companies are working tirelessly to prepare young workers for our modern, technical, and challenging workforce. We encourage younger generations to realize the skills and opportunity that lie in a manufacturing career, and we hope to see you on the production floor soon!

The Art and Beauty of Metal Fabrication

Being a custom metal fabricator is one of the most exciting and rewarding undertakings one can be involved in. It means being a critical part of so many industries—providing creative solutions to companies ranging from mining to construction, and oil to architecture.

As a fabricator, we get to work with leaders in their field and true American innovators. It also means working with some of the most creative and talented people in the world, and having the opportunity to be creative in the process.

For instance, we recently had the chance to work with an artist, helping to design a beautiful sculpture that is now prominently on display near the United Center in Chicago.

This artist came to us with a vision for the sculpture. They provided drawings and CAD files, and we worked closely with them to create a design plan: to plasma cut two separate plates on our large plasma table and weld them together into one large fabrication.

The torch came down and cut out areas of the metal piece, cutting specifically to the project’s design, in one-inch-thick carbon steel. Two panels were created, each panel measuring 10 feet tall and eight feet wide. We then welded the fabrication and upon final inspection and approval, it was sent to be painted and installed.

In the end, the result was a beautiful metal sculpture that matched the initial design and was expertly made and crafted, whose aesthetics matched its quality. It serves as a great example of work that is not only the epitome of fine metal workmanship, but also a piece of art—something that can be enjoyed for generations.

We love having the opportunity to make our work enjoyable to so many others and making an artistic dream a reality.

Manufacturing Top-Quality Long Parts

Here at G.E. Mathis, we pride ourselves on the ability to manufacture a wide range of high-quality components of all shapes and sizes. By staying informed about the latest and greatest manufacturing equipment and processes, we can stay ahead of the competition and do what other manufacturers cannot. One area in which we excel is the fabrication of long parts. This is something that many manufacturers are not capable of doing; our equipment and capabilities offer us a distinct advantage in this market segment.

When making long parts, some manufacturers, due to equipment limitations, may have to fabricate short pieces first. If you want a piece that’s 30 feet long and a manufacturer can only fabricate pieces that are 10 feet long, they would need to form that long part by welding together three different pieces. The problem is that all three of these pieces may not come out exactly the same, leading to the fabrication of a long part with flaws that could greatly lower the quality of the piece.

On the other hand, we’re able to form longer components in just one piece. This is thanks to our lineup of six precision press brakes that can easily handle lengths of 20 to 40 feet. This means that the customer gets a higher-quality, more consistent part in one piece to the length. The whole long part is completely uniform and our manufacturing process eliminates the middle seam in a formed piece, which allows us to cut down on secondary processes that cost more time and money.

So when you need uniform, high-quality long parts, come to the experts. We can make all sorts of long parts, like angles, channels, bump formed segments, and cone segments, and we have experience working with a wide range of materials, from carbon, stainless steel, and aluminum, as well as alloy steel.

Custom Manufacturing: Our Process

Custom manufacturing: It is what our business is built on and is what our customers know us best for. However, how familiar are you with the custom manufacturing process? In other words, are you aware of how fabricators like us actually produce your desired parts?

Design and Quote

Typically, our process begins when a customer approaches us with a drawing of the specified parts or components with the requirements and features precisely detailed. Although we don’t design and engineer a part, we can work with a provided drawing and determine whether or not the specifications will work with our capabilities. At this point, we will provide the customer with a quote, detailing the materials and processes we will be utilizing, as well as the lead time for delivery of parts for the customer to determine whether this will fit into their schedule.

Fabrication

Once a part’s design is set and the quote is approved, it’s time for the fabrication process to begin. Each part will have necessary steps that need to be followed by our engineers. If the part is flat plate or a piece with geometry, then it can be programmed and cut. However, if the part has a more complicated design, then there are more steps in the fabrication, thus extending the process’ time frame.

Throughout the whole process, we maintain consistent communication with our customers, ensuring the part is completed correctly from the beginning stages to the final product. We work diligently to ensure the parts are fabricated to the highest quality and reach their end point right on time. It is our goal to give our customers exactly what they want and need—we have made sure our custom manufacturing process does just that.